The wave equation in oblate spheroidal
coordinates is
![del ^2Phi+k^2Phi=partial/(partialxi_1)[(xi_1^2+1)(partialPhi)/(partialxi_1)]
+partial/(partialxi_2)[(1-xi_2^2)(partialPhi)/(partialxi_2)]+(xi_1^2+xi_2^2)/((xi_1^2+1)(1-x_2^2))(partial^2Phi)/(partialphi^2)
+c^2(xi_1^2+xi_2^2)Phi=0,](/images/equations/OblateSpheroidalWaveFunction/NumberedEquation1.svg) |
(1)
|
where
 |
(2)
|
Substitute in a trial solution
 |
(3)
|
The radial differential equation is
![d/(dxi_2)[(1+xi_2^2)d/(dxi_2)S_(mn)(c,xi_2)]-(lambda_(mn)-c^2xi_2^2+(m^2)/(1+xi_2^2))R_(mn)(c,xi_2)=0,](/images/equations/OblateSpheroidalWaveFunction/NumberedEquation4.svg) |
(4)
|
and the angular differential equation is
![d/(dxi_2)[(1-xi_2^2)d/(dxi_2)S_(mn)(c,xi_2)]-(lambda_(mn)-c^2xi_2^2+(m^2)/(1-xi_2^2))R_(mn)(c,xi_2)=0](/images/equations/OblateSpheroidalWaveFunction/NumberedEquation5.svg) |
(5)
|
(Abramowitz and Stegun 1972, pp. 753-755; Zwillinger 1997, p. 127).
See also
Prolate Spheroidal
Wave Function,
Spheroidal Wave Function
Explore with Wolfram|Alpha
References
Abramowitz, M. and Stegun, I. A. (Eds.). "Spheroidal Wave Functions." Ch. 21 in Handbook
of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing.
New York: Dover, pp. 751-759, 1972.Zwillinger, D. Handbook
of Differential Equations, 3rd ed. Boston, MA: Academic Press, p. 127,
1997.Referenced on Wolfram|Alpha
Oblate Spheroidal Wave Function
Cite this as:
Weisstein, Eric W. "Oblate Spheroidal Wave Function." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/OblateSpheroidalWaveFunction.html
Subject classifications