Extreme care is needed when consulting the literature, as it is common in the theory of modular functions (and in particular the Dedekind
eta function) to use the symbol to denote ,
i.e., the square of the usual nome (e.g., Berndt 1993, p. 139). In this
work, the modular version of
is denoted
Abramowitz, M. and Stegun, I. A. (Eds.). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing.
New York: Dover, p. 591, 1972.Berndt, B. C. Ramanujan's
Theory of Theta-Functions, Theta Functions: from the Classical to the Modern.
Providence, RI: Amer. Math. Soc., pp. 1-63, 1993.Bertrand, D.;
and Zudilin, W. "On the Transcendence Degree of the Differential Field Generated
by Siegel Modular Forms." 23 Jun 2000. http://arxiv.org/abs/math.NT/0006176.Borwein,
J. M. and Borwein, P. B. Pi
& the AGM: A Study in Analytic Number Theory and Computational Complexity.
New York: Wiley, 1987.Bramhall, J. N. "An Iterative Method
for Inversion of Power Series." Comm. ACM4, 317-318, 1961.Ferguson,
H. R. P.; Nielsen, D. E.; and Cook, G. "A Partition Formula for
the Integer Coefficients of the Theta Function Nome." Math. Comput.29,
851-855, 1975.Fettis, H. E. "Note on the Computation of Jacobi's
Nome and Its Inverse." Computing4, 202-206, 1969.Fletcher,
A. §III in "Guide to Tables of Elliptic Functions." Math. Tables
Other Aids Computation3, 229-281, 1948."Guide to Tables."
§III in Math. Tables Other Aids Computation3, 234, 1948.Hermite,
C. Oeuvres, Vol. 4. Paris: Gauthier-Villars, p. 477, 1917.Lowan,
A. N.; Blanch, G.; and Horenstein, W. "On the Inversion of the -Series Associated with Jacobian Elliptic Functions."
Bull. Amer. Math. Soc.48, 737-738, 1942.Sloane, N. J. A.
Sequences A002639/M5108 and A119349
in "The On-Line Encyclopedia of Integer Sequences."Tannery,
J. and Molk, J. Eléments de la théorie des fonctions elliptiques,
Vol. 4. Paris: Gauthier-Villars, p. 141, 1902.Trott, M.
The
Mathematica GuideBook for Symbolics. New York: Springer-Verlag, 2006. http://www.mathematicaguidebooks.org/.Wang,
Z. X. and Guo, D. R. Special Functions. Singapore: World Scientific,
p. 512, 1989.Whittaker, E. T. and Watson, G. N. A
Course in Modern Analysis, 4th ed. Cambridge, England: Cambridge University
Press, 1990.