TOPICS
Search

Moving Sofa Problem


What is the sofa of greatest area S which can be moved around a right-angled hallway of unit width? Hammersley (Croft et al. 1994) showed that

 S>=pi/2+2/pi=2.2074...
(1)

(OEIS A086118). Gerver (1992) found a sofa with larger area and provided arguments indicating that it is either optimal or close to it. The boundary of Gerver's sofa is a complicated shape composed of 18 arcs. Its area can be given by defining the constants A, B, phi, and theta by solving

A(costheta-cosphi)-2Bsinphi+(theta-phi-1)costheta-sintheta+cosphi+sinphi=0
(2)
A(3sintheta+sinphi)-2Bcosphi+3(theta-phi-1)sintheta+3costheta-sinphi+cosphi=0
(3)
Acosphi-(sinphi+1/2-1/2cosphi+Bsinphi)=0
(4)
(A+1/2pi-phi-theta)-[B-1/2(theta-phi)(1+A)-1/4(theta-phi)^2]=0.
(5)

This gives

A=0.094426560843653...
(6)
B=1.399203727333547...
(7)
phi=0.039177364790084...
(8)
theta=0.681301509382725....
(9)
MovingSofaFunctions

Now define

 r(alpha)={1/2   for 0<=alpha<phi; 1/2(1+A+alpha-phi)   for phi<=alpha<theta; A+alpha-phi   for theta<=alpha<1/2pi-theta; B-1/2(1/2pi-alpha-phi)(1+A)   for 1/2pi-theta<=alpha<1/2pi-phi,;   -1/4(1/2pi-alpha-phi)^2
(10)

where

s(alpha)=1-r(alpha)
(11)
u(alpha)={B-1/2(alpha-phi)(1+A) for phi<=alpha<theta-1/4(alpha-phi)^2; A+1/2pi-phi-alpha for theta<=alpha<1/4pi
(12)
D_u(alpha)=(du)/(dalpha)={-1/2(1+A)-1/2(alpha-phi) for phi<=alpha<=theta; -1 if theta<=alpha<1/4pi.
(13)

Finally, define the functions

y_1(alpha)=1-int_0^alphar(t)sintdt
(14)
y_2(alpha)=1-int_0^alphas(t)sintdt
(15)
y_3(alpha)=1-int_0^alphas(t)sintdt-u(alpha)sinalpha.
(16)

The area of the optimal sofa is then given by

A=2int_0^(pi/2-phi)y_1(alpha)r(alpha)cosalphadalpha+2int_0^thetay_2(alpha)s(alpha)cosalphadalpha+2int_phi^(pi/4)y_3(alpha)[u(alpha)sinalpha-D_u(alpha)cosalpha-s(alpha)cosalpha]dalpha
(17)
=2.21953166887197...
(18)

(Finch 2003).


See also

Piano Mover's Problem

Explore with Wolfram|Alpha

References

Croft, H. T.; Falconer, K. J.; and Guy, R. K. Unsolved Problems in Geometry. New York: Springer-Verlag, 1994.Finch, S. R. "Moving Sofa Constant." §8.12 in Mathematical Constants. Cambridge, England: Cambridge University Press, pp. 519-523, 2003.Gerver, J. L. "On Moving a Sofa Around a Corner." Geometriae Dedicata 42, 267-283, 1992.Sloane, N. J. A. Sequence A086118 in "The On-Line Encyclopedia of Integer Sequences."Stewart, I. Another Fine Math You've Got Me Into.... New York: W. H. Freeman, 1992.Trott, M. The Mathematica GuideBook for Programming. New York: Springer-Verlag, p. 104, 2004. http://www.mathematicaguidebooks.org/.

Referenced on Wolfram|Alpha

Moving Sofa Problem

Cite this as:

Weisstein, Eric W. "Moving Sofa Problem." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/MovingSofaProblem.html

Subject classifications