TOPICS
Search

Moessner's Theorem


Write down the positive integers in row one, cross out every k_1th number, and write the partial sums of the remaining numbers in the row below. Now cross off every k_2th number and write the partial sums of the remaining numbers in the row below. Continue. For every positive integer k>1, if every kth number is ignored in row 1, every (k-1)th number in row 2, and every (k+1-i)th number in row i, then the kth row of partial sums will be the kth powers 1^k, 2^k, 3^k, ....


Explore with Wolfram|Alpha

References

Conway, J. H. and Guy, R. K. "Moessner's Magic." In The Book of Numbers. New York: Springer-Verlag, pp. 63-65, 1996.Honsberger, R. More Mathematical Morsels. Washington, DC: Math. Assoc. Amer., pp. 268-277, 1991.Long, C. T. "On the Moessner Theorem on Integral Powers." Amer. Math. Monthly 73, 846-851, 1966.Long, C. T. "Strike it Out--Add it Up." Math. Mag. 66, 273-277, 1982.Moessner, A. "Eine Bemerkung über die Potenzen der natürlichen Zahlen." S.-B. Math.-Nat. Kl. Bayer. Akad. Wiss. 29, 1952.Paasche, I. "Ein neuer Beweis des moessnerischen Satzes." S.-B. Math.-Nat. Kl. Bayer. Akad. Wiss. 1952, 1-5, 1953.Paasche, I. "Ein zahlentheoretische-logarithmischer 'Rechenstab.' " Math. Naturwiss. Unterr. 6, 26-28, 1953-54.Paasche, I. "Eine Verallgemeinerung des moessnerschen Satzes." Compositio Math. 12, 263-270, 1956.

Referenced on Wolfram|Alpha

Moessner's Theorem

Cite this as:

Weisstein, Eric W. "Moessner's Theorem." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/MoessnersTheorem.html

Subject classifications