Explore with Wolfram|Alpha
References
Abramowitz, M. and Stegun, I. A. (Eds.). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing.
New York: Dover, p. 11, 1972.Gradshteyn, I. S. and Ryzhik,
I. M. Tables
of Integrals, Series, and Products, 6th ed. San Diego, CA: Academic Press,
pp. 1092 and 1099, 2000.Hardy, G. H.; Littlewood, J. E.;
and Pólya, G. "Minkowski's Inequality" and "Minkowski's Inequality
for Integrals." §2.11, 5.7, and 6.13 in Inequalities,
2nd ed. Cambridge, England: Cambridge University Press, pp. 30-32, 123,
and 146-150, 1988.Korn, G. A. and Korn, T. M. Mathematical
Handbook for Scientists and Engineers. New York: Dover, p. 118, 2000.Minkowski,
H. Geometrie der Zahlen, Vol. 1. Leipzig, Germany: pp. 115-117,
1896.Sansone, G. Orthogonal
Functions, rev. English ed. New York: Dover, p. 33, 1991.Referenced
on Wolfram|Alpha
Minkowski's Inequalities
Cite this as:
Weisstein, Eric W. "Minkowski's Inequalities."
From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/MinkowskisInequalities.html
Subject classifications