TOPICS
Search

Miller Cylindrical Projection


MillerCylindricalProjection

A map projection given by the following transformation,

x=lambda-lambda_0
(1)
y=5/4ln[tan(1/4pi+2/5phi)]
(2)
=5/4sinh^(-1)[tan(4/5phi)].
(3)

Here, x and y are the plane coordinates of a projected point, lambda is the longitude of a point on the globe, lambda_0 is central longitude used for the projection, and phi is the latitude of the point on the globe.

The inverse formulas are

phi=5/2tan^(-1)(e^(4y/5))-5/8pi
(4)
=5/4tan^(-1)[sinh(4/5y)]
(5)
lambda=lambda_0+x.
(6)

See also

Equidistant Projection, Miller Equidistant Projection

Explore with Wolfram|Alpha

References

Miller, O. M. "Notes on a Cylindrical World Map Projection." Geograph. Rev. 32, 424-430, 1942.Snyder, J. P. Map Projections--A Working Manual. U. S. Geological Survey Professional Paper 1395. Washington, DC: U. S. Government Printing Office, pp. 86-89, 1987.United States Geological Survey. National Atlas of the United States. Washington, DC: USGS, pp. 330-331, 1970.

Referenced on Wolfram|Alpha

Miller Cylindrical Projection

Cite this as:

Weisstein, Eric W. "Miller Cylindrical Projection." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/MillerCylindricalProjection.html

Subject classifications