TOPICS
Search

Metric Discriminant


Given a metric g_(alphabeta), the discriminant is defined by

g=det(g_(alphabeta))
(1)
=|g_(11) g_(12); g_(21) g_(22)|
(2)
=g_(11)g_(22)-(g_(12))^2.
(3)

Let g be the discriminant and g^_ the transformed discriminant, then

 g^_=D^2g
(4)
 g=D^_^2g^_,
(5)

where

D=(partial(u^1,u^2))/(partial(u^_^1,u^_^2))=|(partialu^1)/(partialu^_^1) (partialu^1)/(partialu^_^2); (partialu^2)/(partialu^_^1) (partialu^2)/(partialu^_^2)|
(6)
D^_=(partial(u^_^1,u^_^2))/(partial(u^1,u^2))=|(partialu^_^1)/(partialu^1) (partialu^_^1)/(partialu^2); (partialu^_^2)/(partialu^1) (partialu^_^2)/(partialu^2)|.
(7)

Explore with Wolfram|Alpha

WolframAlpha

More things to try:

Cite this as:

Weisstein, Eric W. "Metric Discriminant." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/MetricDiscriminant.html

Subject classifications