TOPICS
Search

Mertz Apodization Function


MertzApodizationFunction

An asymmetrical apodization function defined by

 M(x,b,d)={0   for x<-b; (x-b)/(2b)   for -b<x<b; 1   for b<x<b+2d; 0   for x<b+2d,
(1)

where the two-sided portion is 2b long (total) and the one-sided portion is b+2d long (Schnopper and Thompson 1974, p. 508). The instrument function is

 M_A(k,b,d)=(sin[2pik(b+2d)])/(2pik)+i{(cos[2pik(b+2d)])/(2pik)-(sin(2b))/(4pi^2k^2b)}.
(2)

Explore with Wolfram|Alpha

References

Schnopper, H. W. and Thompson, R. I. "Fourier Spectrometers." In Methods of Experimental Physics, Vol. 12A. New York: Academic Press, pp. 491-529, 1974.

Referenced on Wolfram|Alpha

Mertz Apodization Function

Cite this as:

Weisstein, Eric W. "Mertz Apodization Function." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/MertzApodizationFunction.html

Subject classifications