|
(1)
|
(Abramowitz and Stegun 1972; Zwillinger 1997, p. 125), having solution
|
(2)
|
where
and
are Mathieu functions. The equation arises in
separation of variables of the Helmholtz
differential equation in elliptic
cylindrical coordinates. Whittaker and Watson (1990) use a slightly different
form to define the Mathieu functions.
The modified Mathieu differential equation
|
(3)
|
(Iyanaga and Kawada 1980, p. 847; Zwillinger 1997, p. 125) arises in separation of variables of the Helmholtz
differential equation in elliptic
cylindrical coordinates, and has solutions
|
(4)
|
The associated Mathieu differential equation is given by
|
(5)
|
(Ince 1956, p. 403; Zwillinger 1997, p. 125).
See also
Hill's Differential Equation,
Mathieu Function,
Whittaker-Hill
Differential Equation
Explore with Wolfram|Alpha
References
Abramowitz, M. and Stegun, I. A. (Eds.). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing.
New York: Dover, p. 722, 1972.Campbell, R. Théorie générale
de l'équation de Mathieu et de quelques autres équations différentielles
de la mécanique. Paris: Masson, 1955.Ince, E. L. Ordinary
Differential Equations. New York: Dover, 1956.Iyanaga, S. and
Kawada, Y. (Eds.). Encyclopedic
Dictionary of Mathematics. Cambridge, MA: MIT Press, p. 847, 1980.Morse,
P. M. and Feshbach, H. Methods
of Theoretical Physics, Part I. New York: McGraw-Hill, pp. 556-557,
1953.Whittaker, E. T. and Watson, G. N. A
Course in Modern Analysis, 4th ed. Cambridge, England: Cambridge University
Press, 1990.Zwillinger, D. (Ed.). CRC
Standard Mathematical Tables and Formulae. Boca Raton, FL: CRC Press, 1995.Zwillinger,
D. Handbook
of Differential Equations, 3rd ed. Boston, MA: Academic Press, p. 125,
1997.Referenced on Wolfram|Alpha
Mathieu Differential Equation
Cite this as:
Weisstein, Eric W. "Mathieu Differential Equation."
From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/MathieuDifferentialEquation.html
Subject classifications