TOPICS
Search

Mathieu Characteristic Exponent


All Mathieu functions have the form e^(irz)f(z), where f(z) has period 2pi and r is known as the Mathieu characteristic exponent. This exponent is returned by the Wolfram Language function MathieuCharacteristicExponent[a, q].


See also

Mathieu Function

Related Wolfram sites

http://functions.wolfram.com/MathieuFunctions/MathieuCharacteristicExponent/

Explore with Wolfram|Alpha

References

Alhargan, F. A. "A Complete Method for the Computations of Mathieu Characteristic Functions and Their Characteristic Numbers of Integer Orders." SIAM Rev. 38, 239-255, 1996.Dingle, R. B. and Müller, H. J. W. "Asymptotic Expansions of Mathieu Functions and Their Characteristic Numbers." J. reine angew. Math. 211, 11-32, 1962.

Cite this as:

Weisstein, Eric W. "Mathieu Characteristic Exponent." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/MathieuCharacteristicExponent.html

Subject classifications