TOPICS
Search

Lucas Circles Radical Circle


LucasCirclesRadicalCircle

The radical circle of the Lucas circles is the circumcircle of the Lucas tangents triangle. Its center has trilinear center function

 alpha_(1151)=2cosA+sinA
(1)

corresponding to Kimberling center X_(1151), and its radius is

R_L=(abc)/(a^2+b^2+c^2+8Delta)
(2)
=R/(cotomega+2),
(3)

where Delta is the area of the reference triangle, R is the circumradius of the reference triangle, and omega is the Brocard angle (P. Moses, pers. comm., Jan. 3, 2005).

Its circle function is

 l=-(2bc)/(a^2+b^2+c^2+8Delta),
(4)

corresponding the triangle centroid G and Kimberling center X_2.

No Kimberling centers lie on the circle.

LucasCirclesRadicalCircleOrthogonal

It is orthogonal to the Parry circle.


See also

Lucas Circles, Lucas Tangents Triangle, Radical Circle

Explore with Wolfram|Alpha

Cite this as:

Weisstein, Eric W. "Lucas Circles Radical Circle." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/LucasCirclesRadicalCircle.html

Subject classifications