The Löwenheim-Skolem theorem is a fundamental result in model theory which states that if a countable theory has a model, then it has a countable
model. Furthermore, it has a model of every cardinal
number greater than or equal to (aleph-0). This theorem
established the existence of "nonstandard" models of arithmetic.
Berry, G. D. W. Symposium on the Ontological Significance of the Löwenheim-Skolem Theorem, Academic Freedom, Logic, and Religion.
Philadelphia, PA: Amer. Philos. Soc., pp. 39-55, 1953.Beth, E. W.
"A Topological Proof of the Theorem of Löwenheim-Skolem-Gödel."
Nederl. Akad. Wetensch., Ser. A54, 436-444, 1951.Beth,
E. W. "Some Consequences of the Theorem of Löwenheim-Skolem-Gödel-Malcev."
Nederl. Akad. Wetensch., Ser. A56, 66-71, 1953.Chang,
C. C. and Keisler, H. J. Model
Theory, 3rd enl. ed. New York: Elsevier, 1990.Church, A. §45
and 49 in Introduction
to Mathematical Logic. Princeton, NJ: Princeton University Press, 1996.Curry,
H. B. Foundations
of Mathematical Logic, 2nd rev. ed. New York: Dover, pp. 6-7, 95-96,
and 121, 1977.Fraenkel, A. A. and Bar-Hillel, Y. Foundations
of Set Theory. Amsterdam, Netherlands, p. 105, 1958.Myhill,
J. Symposium on the Ontological Significance of the Löwenheim-Skolem Theorem,
Academic Freedom, Logic, and Religion. Philadelphia, PA: Amer. Philos. Soc.,
pp. 57-70, 1953.Quine, W. V. "Completeness of Quantification
Theory: Löwenheim's Theorem." Appendix to Methods of Logic, rev. ed.
New York: pp. 253-260, 1959.Quine, W. V. "Interpretation
of Sets of Conditions." J. Symb. Logic19, 97-102, 1954.Rasiowa,
H. and Sikorski, R. "A Proof of the Löwenheim-Skolem Theorem." Fund.
Math.38, 230-232, 1952.Skolem, T. "Sur la portée
du théorème de Löwenheim-Skolem." Les Entretiens de Zurich
sur les fondements et la méthode des sciences mathématiques (December
6-9, 1938), pp. 25-52, 1941.Vaught, R. L. "Applications
of the Löwenheim-Skolem-Tarski Theorem to Problems of Completeness and Decidability."
Nederl. Akad. Wetensch., Ser. A57, 467-472, 1954.