TOPICS
Search

Lipschitz Condition


A function f(x) satisfies the Lipschitz condition of order beta at x=0 if

 |f(h)-f(0)|<=B|h|^beta

for all |h|<epsilon, where B and beta are independent of h, beta>0, and alpha is an upper bound for all beta for which a finite B exists.


See also

Hillam's Theorem, Hölder Condition, Lipschitz Function

Explore with Wolfram|Alpha

References

Jeffreys, H. and Jeffreys, B. S. "The Lipschitz Condition." §1.15 in Methods of Mathematical Physics, 3rd ed. Cambridge, England: Cambridge University Press, p. 53, 1988.

Referenced on Wolfram|Alpha

Lipschitz Condition

Cite this as:

Weisstein, Eric W. "Lipschitz Condition." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/LipschitzCondition.html

Subject classifications