Let
defined and analytic in a half-strip
. If
on the boundary
of
and there is a constant
such that
is bounded on
, then
throughout
(Edwards 2001, p. 2001).
Lindelöf's Theorem
See also
Lindelöf's Catenary Theorem, Lindelöf HypothesisExplore with Wolfram|Alpha
References
Edwards, H. M. Riemann's Zeta Function. New York: Dover, p. 184, 2001.Lindelöf, E. "Quelque remarques sur la croissance de la fonctionReferenced on Wolfram|Alpha
Lindelöf's TheoremCite this as:
Weisstein, Eric W. "Lindelöf's Theorem." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/LindelofsTheorem.html