Let defined and analytic in a half-strip . If on the boundary of and there is a constant such that is bounded on , then throughout (Edwards 2001, p. 2001).
Lindelöf's Theorem
See also
Lindelöf's Catenary Theorem, Lindelöf HypothesisExplore with Wolfram|Alpha
References
Edwards, H. M. Riemann's Zeta Function. New York: Dover, p. 184, 2001.Lindelöf, E. "Quelque remarques sur la croissance de la fonction ." Bull. Sci. Math. 32, 341-356, 1908.Referenced on Wolfram|Alpha
Lindelöf's TheoremCite this as:
Weisstein, Eric W. "Lindelöf's Theorem." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/LindelofsTheorem.html