TOPICS
Search

Lieb's Square Ice Constant


Let L denote the n×n square lattice with wraparound. Call an orientation of L an assignment of a direction to each edge of L, and denote the number of orientations of L such that each vertex has two inwardly directed and two outwardly directly edges by f_n. Such an orientation is said to obey the ice rule, or to consist of Eulerian orientation. For n=1, 2, ..., the first few values of f_n are 4, 18, 148, 2970, ... (OEIS A054759).

Lieb showed that

lim_(n->infty)f_n^(1/n^2)=(4/3)^(3/2)
(1)
=8/9sqrt(3)
(2)
=1.539600...
(3)

(OEIS A118273; Finch 2003, p. 412), which is known as Lieb's square ice constant, also known as the square ice constant, residual entropy for square ice, and six-vertex entropy model.


See also

Twenty-Vertex Entropy Constant

Explore with Wolfram|Alpha

References

Baxter, R. J. Exactly Solved Models in Statistical Mechanics. New York: Academic Press, 1982.Bell, G. M. and Lavis, D. A. Statistical Methods of Lattice Systems, Vol. 1. New York: Springer-Verlag, 1999.Bell, G. M. and Lavis, D. A. Statistical Methods of Lattice Systems, Vol. 2. New York: Springer-Verlag, 1999.Finch, S. R. "Lieb's Square Ice Constant." §5.24 in Mathematical Constants. Cambridge, England: Cambridge University Press, pp. 412-413, 2003.Godsil, C.; Grötschel, M.; and Welch, D. J. A. "Combinatorics in Statistical Physics." In Handbook of Combinatorics, Vol. 2 (Ed. R. L. Graham, M. Grötschel, and L. Lovász). Cambridge, MA: MIT Press, pp. 1925-1954, 1995.Lieb, E. H. "The Residual Entropy of Square Ice." Phys. Rev. 162, 162-172, 1967.Lieb, E. H. "Exact Solution of the Problem of the Entropy of Two-Dimensional Ice." Phys. Rev. Lett. 18, 692-694, 1967.Lieb, E. H. and Wu, F. Y. "Two-Dimensional Ferroelectric Models." In Phase Transitions and Critical Phenomena, Vol. 1 (Ed. C. Domb and M. S. Greene). New York: Academic Press, pp. 331-490, 1972.Percus, J. K. Combinatorial Methods. New York: Springer-Verlag, 1971.Sloane, N. J. A. Sequences A054759 and A118273 in "The On-Line Encyclopedia of Integer Sequences."

Referenced on Wolfram|Alpha

Lieb's Square Ice Constant

Cite this as:

Weisstein, Eric W. "Lieb's Square Ice Constant." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/LiebsSquareIceConstant.html

Subject classifications