TOPICS
Search

Lemarié's Wavelet


A wavelet used in multiresolution representation to analyze the information content of images. The wavelet is defined by

 H(omega)=[2(1-u)^4(315-420u+126u^2-4u^3)/(315-420v+126v^2-4v^3)]^(1/2),
(1)

where

u=sin^2(1/2omega)
(2)
v=sin^2omega
(3)

(Mallat 1989ab).


See also

Wavelet

Explore with Wolfram|Alpha

References

Mallat, S. G. "A Theory for Multiresolution Signal Decomposition: The Wavelet Representation." IEEE Trans. Pattern Analysis Machine Intel. 11, 674-693, 1989a.Mallat, S. G. "Multiresolution Approximation and Wavelet Orthonormal Bases of L^2(R)." Trans. Amer. Math. Soc. 315, 69-87, 1989b.

Referenced on Wolfram|Alpha

Lemarié's Wavelet

Cite this as:

Weisstein, Eric W. "Lemarié's Wavelet." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/LemariesWavelet.html

Subject classifications