TOPICS
Search

Legendre's Constant


LegendresConstant

Legendre's constant is the number 1.08366 in Legendre's guess at the prime number theorem

 pi(n)=n/(lnn-A(n))

with lim_(n->infty)A(n) approx 1.08366. Legendre first published a guess the form

 n/(Alnn+B)

in his Essai sur la Théorie des Nombres (Edwards 2001, p. 3; Havil 2003, p. 177), but in the third edition (renamed Théorie des nombres), modified it to the form above (Derbyshire 2004, pp. 55 and 369).

This expression is correct to leading term only, since it is actually true that this limit approaches 1 (Rosser and Schoenfeld 1962, Panaitopol 1999).


See also

Prime Counting Function

Explore with Wolfram|Alpha

References

Abel, N. H. Letter to Holmboe. 4 August 1823. In Niels Henrik Abel, Memorial, Publié à l'Occasion du Centenaire de sa Naissance.Chebyshev, P. L. "Sur la fonction qui détermine la totalité des nombres premiers inferieurs à une limite donnée." J. math. pures appl. 17, 1852.Derbyshire, J. Prime Obsession: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics. New York: Penguin, 2004.Dirichlet, P. G. L. "Sur l'usage des series infinies dans la théorie des nombres." J. reine angew. Math. 18, 257-274, 1838. Reprinted in Werke, Vol. 1, pp. 359-374.Edwards, H. M. Riemann's Zeta Function. New York: Dover, pp. 3-4, 2001.Havil, J. Gamma: Exploring Euler's Constant. Princeton, NJ: Princeton University Press, 2003.Le Lionnais, F. Les nombres remarquables. Paris: Hermann, p. 147, 1983.Legendre, A. M. Essai sur la Théorie des Nombres. Paris: Duprat, 1808.Panaitopol, L. "Several Approximations of pi(x)." Math. Ineq. Appl. 2, 317-324, 1999.Ribenboim, P. The New Book of Prime Number Records. New York: Springer-Verlag, 1996.Rosser, J. B. and Schoenfeld, L. "Approximate Formulas for Some Functions of Prime Numbers." Ill. J. Math. 6, 64-94, 1962.Wagon, S. Mathematica in Action. New York: W. H. Freeman, pp. 28-29, 1991.

Referenced on Wolfram|Alpha

Legendre's Constant

Cite this as:

Weisstein, Eric W. "Legendre's Constant." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/LegendresConstant.html

Subject classifications