TOPICS
Search

Lattice Tolerance


Let L=(L, ^ , v ) be a lattice, and let tau subset= L^2. Then tau is a tolerance if and only if it is a reflexive and symmetric sublattice of L^2.

Tolerances of lattices, with their related polarities, play an important role in the study of the structure of finite algebras.


This entry contributed by Matt Insall (author's link)

Explore with Wolfram|Alpha

References

Bandelt, H. H. "Tolerance Relations on Lattices." Bull. Austral. Math. Soc. 23, 367-381, 1981.Birkhoff, G. Lattice Theory, 3rd ed. Providence, RI: Amer. Math. Soc., 1967.Chajda, I. and Zelinka, B. "Tolerances and Convexity." Czech. Math. J. 29, 584-587, 1979.Chajda, I. and Zelinka, B. "A Characterization of Tolerance-Distributive Tree Semilattices." Czech. Math. J. 37, 175-180, 1987.Grätzer, G. General Lattice Theory, 2nd ed. Boston, MA: Birkhäuser, 1998.Hobby, D. and McKenzie, R. The Structure of Finite Algebras. Providence, RI: Amer. Math. Soc., 1988.Insall, M. "Some Finiteness Conditions in Lattices Using Nonstandard Proof Methods." J. Austral. Math. Soc. 53, 266-280, 1992.Schweigert, D. "Central Relations on Lattices." J. Austral. Math. Soc. 37, 213-219, 1988.Schweigert, D. and Szymanska, M. "On Central Relations of Complete Lattices." Czech. Math. J. 37, 70-74, 1987.

Referenced on Wolfram|Alpha

Lattice Tolerance

Cite this as:

Insall, Matt. "Lattice Tolerance." From MathWorld--A Wolfram Web Resource, created by Eric W. Weisstein. https://mathworld.wolfram.com/LatticeTolerance.html

Subject classifications