TOPICS
Search

Laplace's Integral


Laplace's integral is one of the following integral representations of the Legendre polynomial P_n(x),

P_n(x)=1/piint_0^pi(du)/((x+sqrt(x^2-1)cosu)^(n+1))du
(1)
=1/piint_0^pi(x+sqrt(x^2-1)cosu)^ndu.
(2)

It can be evaluated in terms of the hypergeometric function.


See also

Legendre Polynomial, Laplace-Mehler Integral, Mehler-Dirichlet Integral

Explore with Wolfram|Alpha

Cite this as:

Weisstein, Eric W. "Laplace's Integral." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/LaplacesIntegral.html

Subject classifications