TOPICS
Search

Lambert Azimuthal Equal-Area Projection


LambertAzimuthal

The Lambert azimuthal equal-area projection is a map projection having transformation equations

x=k^'cosphisin(lambda-lambda_0)
(1)
y=k^'[cosphi_1sinphi-sinphi_1cosphicos(lambda-lambda_0)],
(2)

where phi_1 is the standard parallel, lambda_0 is the central longitude, and

 k^'=sqrt(2/(1+sinphi_1sinphi+cosphi_1cosphicos(lambda-lambda_0))).
(3)

The inverse formulas are

phi=sin^(-1)(coscsinphi_1+(ysinccosphi_1)/rho)
(4)
lambda=lambda_0+tan^(-1)((xsinc)/(rhocosphi_1cosc-ysinphi_1sinc)),
(5)

where

rho=sqrt(x^2+y^2)
(6)
c=2sin^(-1)(1/2rho).
(7)

See also

Azimuthal Projection, Balthasart Projection, Behrmann Cylindrical Equal-Area Projection, Cylindrical Equal-Area Projection, Equal-Area Projection, Gall Orthographic Projection, Hammer-Aitoff Equal-Area Projection, Lambert Conformal Conic Projection, Peters Projection, Stereographic Projection, Tristan Edwards Projection

Explore with Wolfram|Alpha

References

Snyder, J. P. Map Projections--A Working Manual. U. S. Geological Survey Professional Paper 1395. Washington, DC: U. S. Government Printing Office, pp. 182-190, 1987.

Referenced on Wolfram|Alpha

Lambert Azimuthal Equal-Area Projection

Cite this as:

Weisstein, Eric W. "Lambert Azimuthal Equal-Area Projection." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/LambertAzimuthalEqual-AreaProjection.html

Subject classifications