TOPICS
Search

Kravitz Conjecture


The first few numbers whose abundance absolute values are odd squares (excluding the trivial cases of powers of 2) are 98, 2116, 4232, 49928, 80656, 140450, 550564, 729632, ... (OEIS A188484).

Kravitz conjectured that no numbers exist whose abundance is a (positive) odd square (Guy 2004). This conjecture is false with smallest counterexample

A(550564)=41209
(1)
=203^2,
(2)

and first few counterexamples given by 550564, 15038884, 57365476, ... (OEIS A188486).


See also

Abundance

Explore with Wolfram|Alpha

References

Guy, R. K. Unsolved Problems in Number Theory, 3rd ed. New York: Springer-Verlag, 2004.Sloane, N. J. A. Sequence A188484 and A188486 in "The On-Line Encyclopedia of Integer Sequences."

Referenced on Wolfram|Alpha

Kravitz Conjecture

Cite this as:

Weisstein, Eric W. "Kravitz Conjecture." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/KravitzConjecture.html

Subject classifications