Kloosterman's sum essentially solves the problem introduced by Ramanujan of representing sufficiently large numbers by quadratic forms. Weil improved
on Kloosterman's estimate for Ramanujan's problem with the best possible estimate
Duke, W. "Some Old Problems and New Results about Quadratic Forms." Not. Amer. Math. Soc.44, 190-196, 1997.Hardy,
G. H. and Wright, E. M. An
Introduction to the Theory of Numbers, 5th ed. Oxford, England: Clarendon
Press, p. 56, 1979.Katz, N. M. Gauss
Sums, Kloosterman Sums, and Monodromy Groups. Princeton, NJ: Princeton University
Press, 1987.Kloosterman, H. D. "On the Representation of Numbers
in the Form ."
Acta Math.49, 407-464, 1926.Kloosterman, H. D. "The
Behavior of General Theta Functions under the Modular Group and the Characters of
Binary Modular Congruence Groups, I." Ann. Math.47, 317-375,
1946.Kloosterman, H. D. "The Behavior of General Theta Functions
under the Modular Group and the Characters of Binary Modular Congruence Groups, II."
Ann. Math.47, 376-447, 1946.Malyšev, A. V.
"Gauss and Kloosterman Sums." Dokl. Akad. Nauk SSSR133,
1017-1020, 1960. English translation in Soviet Math. Dokl.1, 928-932,
1960.Ramanujan, S. "On the Expression of a Number in the Form ." In Collected
Papers of Srinivasa Ramanujan. (Ed. G. H. Hardy, P. V. S. Aiyar,
and B. M. Wilson). Providence, RI: Amer. Math. Soc., 2000.