TOPICS
Search

Kenmotu Circle


KenmotuCircle

The Kenmotu circle is the circle passing through the six contact points of the congruent squares used in the construction of the Kenmotu point with the triangle sides. It is a Tucker circle with parameter phi=pi/4. Its center is the Kenmotu point X_(371), and it has radius

R_K=R(sinomega)/(sin(omega+1/4pi))
(1)
=(sqrt(2)Rsinomega)/(cosomega+sinomega)
(2)
=(sqrt(2)abc)/(4Delta+(a^2+b^2+c^2)),
(3)

where R is the circumradius of the reference triangle, omega is the Brocard angle, and Delta is the area of the reference triangle.

Its circle function corresponds to Kimberling center X_(492).

No Kimberling centers lie on the Kenmotu circle.


See also

Kenmotu Point, Tucker Circles

Explore with Wolfram|Alpha

Cite this as:

Weisstein, Eric W. "Kenmotu Circle." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/KenmotuCircle.html

Subject classifications