TOPICS
Search

Kaprekar Number


Consider an n-digit number k. Square it and add the right n digits to the left n or n-1 digits. If the resultant sum is k, then k is called a Kaprekar number. For example, 9 is a Kaprekar number since

 9^2=81    8+1=9,

and 297 is a Kaprekar number since

 297^2=88209    88+209=297.

The first few are 1, 9, 45, 55, 99, 297, 703, ... (OEIS A006886).


See also

Digital Root, Digitaddition, Happy Number, Kaprekar's Constant, Kaprekar Routine, Narcissistic Number, Recurring Digital Invariant

Explore with Wolfram|Alpha

References

Iannucci, D. E. "The Kaprekar Numbers." J. Integer Sequences 3, No. 00.1.2, 2000. http://www.math.uwaterloo.ca/JIS/VOL3/VOL3/iann2a.Kaprekar, D. "On Kaprekar Numbers." J. Rec. Math. 13, 81-82, 1980-1981.Sloane, N. J. A. Sequence A006886/M4625 in "The On-Line Encyclopedia of Integer Sequences."Wells, D. The Penguin Dictionary of Curious and Interesting Numbers. Middlesex, England: Penguin Books, p. 73, 1986.

Referenced on Wolfram|Alpha

Kaprekar Number

Cite this as:

Weisstein, Eric W. "Kaprekar Number." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/KaprekarNumber.html

Subject classifications