Suppose
are given positive numbers. Let , ..., and . Then
(1)
where
(2)
(3)
are the arithmetic and geometric mean, respectively, of the first and last numbers. The Kantorovich inequality
is central to the study of convergence properties of descent methods in optimization
(Luenberger 1984).
Bauer, F. L. "A Further Generalization of the Kantorovich Inequality." Numer. Math.3, 117-119, 1961.Greub,
W. and Rheinboldt, W. "On a Generalization of an Inequality of L. V. Kantorovich."
Proc. Amer. Math. Soc.10, 407-413, 1959.Henrici, P. "Two
Remarks of the Kantorovich Inequality." Amer. Math. Monthly68,
904-906, 1961.Kantorovič, L. V. "Functional Analysis
and Applied Mathematics" [Russian]. Uspekhi Mat. Nauk3, 89-185,
1948.Luenberger, D. G. Linear
and Nonlinear Programming, 2nd ed. Reading, MA: Addison-Wesley, pp. 217-219,
1984.Newman, M. "Kantorovich's Inequality." J. Res. National
Bur. Standards64B, 33-34, 1960.Pólya, G. and Szegö,
G. Aufgaben
und Lehrsätze der Analysis. Berlin: Springer-Verlag, 1925.Pták,
V. "The Kantorovich Inequality." Amer. Math. Monthly102,
820-821, 1995.Schopf, A. H. "On the Kantorovich Inequality."
Numer. Math.2, 344-346, 1960.Strang, W. G. "On
the Kantorovich Inequality." Proc. Amer. Math. Soc.11, 468, 1960.