TOPICS
Search

Kadomtsev-Petviashvili-Burgers Equation


The so-called generalized Kadomtsev-Petviashvili-Burgers equation is the partial differential equation

 partial/(partialx)(u_t+(Ju)/(2t)+J_1uu_x+J_2u_(xx)+J_3u_(xxx))+J_4(t)u_(yy)=0

(Brugarino 1986; Zwillinger 1997, p. 131).


See also

Kadomtsev-Petviashvili Equation

Explore with Wolfram|Alpha

References

Brugarino, T. "Similarity Solutions of the Generalized Kadomtsev-Petviashvili-Burgers Equation." Nuovo Cimento B 92, 142-156, 1986.Dryuma, V. "On an Analytic Solution of the Two-Dimensional Korteweg-de Vries (KdV) Equation." Pisma v. ZhETF 19, 753-755, 1974. Reprinted in JETP Lett. 19, 387-388, 1974.Infeld, E. and Rowlands, G. "An Example: The Kadomtsev-Petviashvili Equation." §7.10.4 in Nonlinear Waves, Solitons, and Chaos, 2nd ed. Cambridge, England: Cambridge University Press, pp. 196-199, 2000.Zwillinger, D. Handbook of Differential Equations, 3rd ed. Boston, MA: Academic Press, p. 131, 1997.

Referenced on Wolfram|Alpha

Kadomtsev-Petviashvili-Burgers Equation

Cite this as:

Weisstein, Eric W. "Kadomtsev-Petviashvili-Burgers Equation." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/Kadomtsev-Petviashvili-BurgersEquation.html

Subject classifications