TOPICS
Search

Johnson Solid


The Johnson solids are the convex polyhedra having regular faces and equal edge lengths (with the exception of the completely regular Platonic solids, the "semiregular" Archimedean solids, and the two infinite families of prisms and antiprisms). There are 28 simple (i.e., cannot be dissected into two other regular-faced polyhedra by a plane) regular-faced polyhedra in addition to the prisms and antiprisms (Zalgaller 1969), and Johnson (1966) proposed and Zalgaller (1969) proved that there exist exactly 92 Johnson solids in all.

They are implemented in the Wolfram Language as PolyhedronData[{"Johnson", n}].

The sketelons of the Johnson solids may be termed Johnson skeleton graphs.

There is a near-Johnson solid which can be constructed by inscribing regular nonagons inside the eight triangular faces of a regular octahedron, then joining the free edges to the 24 triangles and finally the remaining edges of the triangles to six squares, with one square for each octahedral vertex. It turns out that the triangles are not quite equilateral, making the edges that bound the squares a slightly different length from that of the enneagonal edge. However, because the differences in edge lengths are so small, the flexing of an average model allows the solid to be constructed with all edges equal.

A database of solids and polyhedron vertex nets of these solids is maintained on the Sandia National Laboratories Netlib server (http://netlib.sandia.gov/polyhedra/), but a few errors exist in several entries. Corrected versions are implemented in the Wolfram Language via PolyhedronData. The following list summarizes the names of the Johnson solids and gives their images and nets.

1. Square pyramid

J01
J01Net

2. Pentagonal pyramid

J02
J02Net

3. Triangular cupola

J03
J03Net

4. Square cupola

J04
J04Net

5. Pentagonal cupola

J05
J05Net

6. Pentagonal rotunda

J06
J06Net

7. Elongated triangular pyramid

J07
J07Net

8. Elongated square pyramid

J08
J08Net

9. Elongated pentagonal pyramid

J09
J09Net

10. Gyroelongated square pyramid

J10
J10Net

11. Gyroelongated pentagonal pyramid

J11
J11Net

12. Triangular dipyramid

J12
J12Net

13. Pentagonal dipyramid

J13
J13Net

14. Elongated triangular dipyramid

J14
J14Net

15. Elongated square dipyramid

J15
J15Net

16. Elongated pentagonal dipyramid

J16
J16Net

17. Gyroelongated square dipyramid

J17
J17Net

18. Elongated triangular cupola

J18
J18Net

19. Elongated square cupola

J19
J19Net

20. Elongated pentagonal cupola

J20
J20Net

21. Elongated pentagonal rotunda

J21
J21Net

22. Gyroelongated triangular cupola

J22
J22Net

23. Gyroelongated square cupola

J23
J23Net

24. Gyroelongated pentagonal cupola

J24
J24Net

25. Gyroelongated pentagonal rotunda

J25
J25Net

26. Gyrobifastigium

J26
J26Net

27. Triangular orthobicupola

J27
J27Net

28. Square orthobicupola

J28
J28Net

29. Square gyrobicupola

J29
J29Net

30. Pentagonal orthobicupola

J30
J30Net

31. Pentagonal gyrobicupola

J31
J31Net

32. Pentagonal orthocupolarotunda

J32
J32Net

33. Pentagonal gyrocupolarotunda

J33
J33Net

34. Pentagonal orthobirotunda

J34
J34Net

35. Elongated triangular orthobicupola

J35
J35Net

36. Elongated triangular gyrobicupola

J36
J36Net

37. Elongated square gyrobicupola

J37
J37Net

38. Elongated pentagonal orthobicupola

J38
J38Net

39. Elongated pentagonal gyrobicupola

J39
J39Net

40. Elongated pentagonal orthocupolarotunda

J40
J40Net

41. Elongated pentagonal gyrocupolarotunda

J41
J41Net

42. Elongated pentagonal orthobirotunda

J42
J42Net

43. Elongated pentagonal gyrobirotunda

J43
J43Net

44. Gyroelongated triangular bicupola

J44
J44Net

45. Gyroelongated square bicupola

J45
J45Net

46. Gyroelongated pentagonal bicupola

J46
J46Net

47. Gyroelongated pentagonal cupolarotunda

J47
J47Net

48. Gyroelongated pentagonal birotunda

J48
J48Net

49. Augmented triangular prism

J49
J49Net

50. Biaugmented triangular prism

J50
J50Net

51. Triaugmented triangular prism

J51
J51Net

52. Augmented pentagonal prism

J52
J52Net

53. Biaugmented pentagonal prism

J53
J53Net

54. Augmented hexagonal prism

J54
J54Net

55. Parabiaugmented hexagonal prism

J55
J55Net

56. Metabiaugmented hexagonal prism

J56
J56Net

57. Triaugmented hexagonal prism

J57
J57Net

58. Augmented dodecahedron

J58
J58Net

59. Parabiaugmented dodecahedron

J59
J59Net

60. Metabiaugmented dodecahedron

J60
J60Net

61. Triaugmented dodecahedron

J61
J61Net

62. Metabidiminished icosahedron

J62
J62Net

63. Tridiminished icosahedron

J63
J63Net

64. Augmented tridiminished icosahedron

J64
J64Net

65. Augmented truncated tetrahedron

J65
J65Net

66. Augmented truncated cube

J66
J66Net

67. Biaugmented truncated cube

J67
J67Net

68. Augmented truncated dodecahedron

J68
J68Net

69. Parabiaugmented truncated dodecahedron

J69
J69Net

70. Metabiaugmented truncated dodecahedron

J70
J70Net

71. Triaugmented truncated dodecahedron

J71
J71Net

72. Gyrate rhombicosidodecahedron

J72
J72Net

73. Parabigyrate rhombicosidodecahedron

J73
J73Net

74. Metabigyrate rhombicosidodecahedron

J74
J74Net

75. Trigyrate rhombicosidodecahedron

J75
J75Net

76. Diminished rhombicosidodecahedron

J76
J76Net

77. Paragyrate diminished rhombicosidodecahedron

J77
J77Net

78. Metagyrate diminished rhombicosidodecahedron

J78
J78Net

79. Bigyrate diminished rhombicosidodecahedron

J79
J79Net

80. Parabidiminished rhombicosidodecahedron

J80
J80Net

81. Metabidiminished rhombicosidodecahedron

J81
J81Net

82. Gyrate bidiminished rhombicosidodecahedron

J82
J82Net

83. Tridiminished rhombicosidodecahedron

J83
J83Net

84. Snub disphenoid

J84
J84Net

85. Snub square antiprism

J85
J85Net

86. Sphenocorona

J86
J86Net

87. Augmented sphenocorona

J87
J87Net

88. Sphenomegacorona

J88
J88Net

89. Hebesphenomegacorona

J89
J89Net

90. Disphenocingulum

J90
J90Net

91. Bilunabirotunda

J91
J91Net

92. Triangular hebesphenorotunda

J92
J92Net

The number of constituent n-gons ({n}) for each Johnson solid are given in the following table.

J_n {3} {4} {5} {6} {8} {10} J_n {3} {4} {5} {6} {8} {10}
141473557
251484012
34314962
445150101
555115114
6106152442
74353832
84554452
955155842
1012156842
11151571232
12658511
1310591010
1463601010
158461159
1610562102
17166353
184916473
19413165833
2051511661255
211010616716104
22163168255111
232051693010210
2425511703010210
25306171351539
264472203012
278673203012
2881074203012
2981075203012
3010102761525111
3110102771525111
321557781525111
331557791525111
342012801020102
35812811020102
36812821020102
378188351593
38102028412
391020285242
401515786122
411515787161
4220101288162
4320101289183
4420690204
45241091824
46301029213331

See also

Antiprism, Archimedean Solid, Convex Polyhedron, Johnson Skeleton Graph, Kepler-Poinsot Polyhedron, Polyhedron, Platonic Solid, Prism, Uniform Polyhedron

Explore with Wolfram|Alpha

References

Bulatov, V. "V. Bulatov's Polyhedra Collection: Johnson Solids." http://bulatov.org/polyhedra/johnson/.Cromwell, P. R. Polyhedra. New York: Cambridge University Press, pp. 86-92, 1997.Hart, G. "NetLib Polyhedra DataBase." http://www.georgehart.com/virtual-polyhedra/netlib-info.html.Holden, A. Shapes, Space, and Symmetry. New York: Dover, 1991.Hume, A. Exact Descriptions of Regular and Semi-Regular Polyhedra and Their Duals. Computer Science Technical Report #130. Murray Hill, NJ: AT&T Bell Laboratories, 1986.Johnson, N. W. "Convex Polyhedra with Regular Faces." Canad. J. Math. 18, 169-200, 1966.Pedagoguery Software. Poly. http://www.peda.com/poly/.Pugh, A. "Further Convex Polyhedra with Regular Faces." Ch. 3 in Polyhedra: A Visual Approach. Berkeley, CA: University of California Press, pp. 28-35, 1976.Sandia National Laboratories. "Polyhedron Database." http://netlib.sandia.gov/polyhedra/.Webb, R. "Miscellaneous Polyhedra: Johnson Solids and Their Duals." http://www.software3d.com/Misc.html#Johnson.Wells, D. The Penguin Dictionary of Curious and Interesting Geometry. London: Penguin, pp. 70-71, 1991.Wells, D. The Penguin Dictionary of Curious and Interesting Numbers. New York: Penguin Books, pp. 88-89, 1986.Zalgaller, V. Convex Polyhedra with Regular Faces. New York: Consultants Bureau, 1969.

Referenced on Wolfram|Alpha

Johnson Solid

Cite this as:

Weisstein, Eric W. "Johnson Solid." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/JohnsonSolid.html

Subject classifications