TOPICS
Search

Jackson's Identity


The q-hypergeometric function identity

 _rphi_s^'[a,qsqrt(a),-qsqrt(a),1/b,1/c,1/d,1/e,1/f; sqrt(a),-sqrt(a),abq,acq,adq,aeq,afq] 
 =((aq)_q^m(aqde)_q^m(adec)_q^m(aqcd)_q^m)/((aqc)_q^m(aqd)_q^m(aqe)_q^m(aqcde)_q^m),

where

 a^2bcdefq=1,

_rphi_s^' is a q-hypergeometric function, and one of b, c, d, e, or f is equal to q^m (Hardy 1999, pp. 108-109). This identity includes the Dougall-Ramanujan identity as a special case.


See also

Dougall-Ramanujan Identity, Jackson-Slater Identity, q-Hypergeometric Function

Explore with Wolfram|Alpha

References

Bailey, W. N. Generalised Hypergeometric Series. Cambridge, England: Cambridge University Press, pp. 66-72, 1935.Hardy, G. H. Ramanujan: Twelve Lectures on Subjects Suggested by His Life and Work, 3rd ed. New York: Chelsea, pp. 109-110, 1999.Jackson, F. H. "Summation of q-Hypergeometric Series." Messenger Math. 50, 101-112, 1921.

Referenced on Wolfram|Alpha

Jackson's Identity

Cite this as:

Weisstein, Eric W. "Jackson's Identity." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/JacksonsIdentity.html

Subject classifications