The complexity
of an integer
is the least number of 1s needed to represent it using only additions,
multiplications, and parentheses.
For example, the numbers 1 through 10 can be minimally represented as
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
so the complexities for , 2, ..., are 1, 2, 3, 4, 5, 5, 6, 6, 6, 7, 8, 7, 8, ...
(OEIS A005245).
The smallest numbers of complexity , 2, ... are 1, 2, 3, 4, 5, 7, 10, 11, 17, 22, 23, 41, ...
(OEIS A005520).
Guy, R. K. "Expressing Numbers Using Just Ones." §F26 in Unsolved
Problems in Number Theory, 2nd ed. New York: Springer-Verlag, p. 263,
1994.Guy, R. K. "Some Suspiciously Simple Sequences."
Amer. Math. Monthly93, 186-190, 1986.Guy, R. K.
"Monthly Unsolved Problems, 1969-1987." Amer. Math. Monthly94,
961-970, 1987.Guy, R. K. "Unsolved Problems Come of Age."
Amer. Math. Monthly96, 903-909, 1989.Pegg, E. Jr.
"Math Games: Integer Complexity." Feb. 12, 2004. http://www.maa.org/editorial/mathgames/mathgames_04_12_04.html. Pegg, E. Jr. "Integer Complexity." http://library.wolfram.com/infocenter/MathSource/5175/.Rawsthorne,
D. A. "How Many 1's are Needed?" Fib. Quart.27, 14-17,
1989.Sloane, N. J. A. Sequences A005245/M0457
and A005520/M0523 in "The On-Line Encyclopedia
of Integer Sequences."Wolfram, S. A
New Kind of Science. Champaign, IL: Wolfram Media, p. 916,
2002.