TOPICS
Search

Injective Module


An injective module is the dual notion to the projective module. A module M over a unit ring R is called injective iff whenever M is contained as a submodule in a module N, there exists a submodule X of N such that the direct sum M direct sum X is isomorphic to N (in other words, M is a direct summand of N). The subset {0,2} of Z_4 is an example of a noninjective Z-module; it is a Z-submodule of Z_4, and it is isomorphic to Z_2; Z_4, however, is not isomorphic to the direct sum Z_2 direct sum Z_2. The field of rationals Q and its quotient module Q/Z are examples of injective Z-modules.

A direct product of injective modules is always injective. The corresponding property for direct sums does not hold in general, but it is true for modules over Noetherian rings.

The notion of injective module can also be characterized by means of commutative diagrams, split exact sequences, or exact functors.


See also

Commutative Diagram, Baer's Criterion, Cofree Module, Divisible Module, Exact Functor, Projective Module

This entry contributed by Margherita Barile

Explore with Wolfram|Alpha

References

Beachy, J. A. Introductory Lectures on Rings and Modules. Cambridge, England: Cambridge University Press, pp. 93-95, 1999.Bruns, W. and Herzog, J. Cohen-Macaulay Rings, 2nd ed. Cambridge, England: Cambridge University Press, pp. 87-91, 1998.Cartan H. and Eilenberg, S. "Injective Modules." §1.3 in Homological Algebra. Princeton, NJ: Princeton University Press, pp. 8-10, 1956.Hilton, P. J. and Stammbach, U. "Dualization, Injective Modules" and "Injective Modules over a Principal Ideal Domain." §6 and 7 in A Course in Homological Algebra, 2nd ed. New York: Springer-Verlag, pp. 28-33, 1997.Jacobson, N. "Injective Modules. Injective Hull." §3.11 in Basic Algebra II. San Francisco, CA: W. H. Freeman, pp. 155-164, 1980.Lam, T. Y. "Injective Modules." §3 in Lectures on Modules and Rings. New York: Springer-Verlag, pp. 60-120, 1999.Lang, S. "Injective Modules." §20.4 in Algebra, rev. 3rd ed. New York: Springer-Verlag, pp. 782-786, 2002.Mac Lane, S. "Injective Modules." §7 in Homology. Berlin: Springer-Verlag, pp. 92-95, 1967.Passman, D. S. A Course in Ring Theory. Pacific Grove, CA: Wadsworth & Brooks/Cole, pp. 206-210, 1991.Northcott, D. G. "Injective Modules." §5.2 in An Introduction to Homological Algebra. Cambridge, England: Cambridge University Press, pp. 67-70, 1966.Rowen, L. H. "Injective Modules." §2.10 in Ring Theory, Vol. 1. San Diego, CA: Academic Press, pp. 261-270, 1988.Sharpe, D. W. and Vámos, P. Injective Modules. Cambridge, England: Cambridge University Press, 1972.

Referenced on Wolfram|Alpha

Injective Module

Cite this as:

Barile, Margherita. "Injective Module." From MathWorld--A Wolfram Web Resource, created by Eric W. Weisstein. https://mathworld.wolfram.com/InjectiveModule.html

Subject classifications