The independent domination number of a graph is the minimum size of an independent dominating set (Crevals and Östergård 2015, Ilić and Milošević 2017). Since any maximal independent vertex set is also minimal dominating (Mynhardt and Roux 2020), the independent domination number is equivalent to the lower independence number.
Independent Domination Number
See also
Independent Dominating Set, Lower Independence NumberExplore with Wolfram|Alpha
References
Crevals, S. and Östergård, P. R. J. "Independent Domination of Grids." Disc. Math. 338, 1379-1384, 2015.Ilić, A. and Milošević, M. "The Parameters of Fibonacci and Lucas Cubes." Ars Math. Contemp. 12, 25-29, 2017.Mynhardt, C. M. and Roux, A. "Irredundance Graphs." 14 Apr. 2020. https://arxiv.org/abs/1812.03382.Cite this as:
Weisstein, Eric W. "Independent Domination Number." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/IndependentDominationNumber.html