TOPICS
Search

Hyperbolic Rotation


Also known as the a Lorentz transformation or Procrustian stretch, a hyperbolic transformation leaves each branch of the hyperbola x^'y^'=xy invariant and transforms circles into ellipses with the same area.

x^'=mu^(-1)x
(1)
y^'=muy.
(2)

See also

Crossed Hyperbolic Rotation

Explore with Wolfram|Alpha

References

Coxeter, H. S. M. and Greitzer, S. L. Geometry Revisited. Washington, DC: Math. Assoc. Amer., p. 101, 1967.

Referenced on Wolfram|Alpha

Hyperbolic Rotation

Cite this as:

Weisstein, Eric W. "Hyperbolic Rotation." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/HyperbolicRotation.html

Subject classifications