Horowitz reduction is used in indefinite integration to reduce a rational function into polynomial and logarithmic parts. The polynomial part is then trivially integrated, while the logarithmic part can be integrated via the Rothstein-Trager method.
Horowitz Reduction
See also
Indefinite IntegralThis entry contributed by Bhuvanesh Bhatt
Explore with Wolfram|Alpha
References
Bronstein, M. "Symbolic Integration Tutorial." ISSAC 1998. http://citeseer.nj.nec.com/bronstein98symbolic.html.Gathen, J. von zur and Gerhard, J. Modern Computer Algebra. Cambridge, England: Cambridge University Press, pp. 601-606, 1999.Geddes, K. O.; Czapor, S. R.; and Labahn, G. Algorithms for Computer Algebra. Amsterdam, Netherlands: Kluwer, 1992.Horowitz, H. "Algorithms for Partial Fraction Decomposition and Rational Function Integration." In Proceedings of the Second ACM Symposium on Symbolic and Algebraic Manipulation, Los Angeles, California, March 23-25, 1971. pp. 441-457, 1971.Referenced on Wolfram|Alpha
Horowitz ReductionCite this as:
Bhatt, Bhuvanesh. "Horowitz Reduction." From MathWorld--A Wolfram Web Resource, created by Eric W. Weisstein. https://mathworld.wolfram.com/HorowitzReduction.html