The bifurcation of a fixed point to a limit cycle (Tabor 1989).
Hopf Bifurcation
Explore with Wolfram|Alpha
References
Casti, J. L. "The Hopf Bifurcation Theorem." Ch. 2 in Five More Golden Rules: Knots, Codes, Chaos, and Other Great Theories of 20th-Century Mathematics. New York: Wiley, pp. 35-99, 2000.Guckenheimer, J. and Holmes, P. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, 3rd ed. New York: Springer-Verlag, pp. 150-154, 1997.Marsden, J. and McCracken, M. Hopf Bifurcation and Its Applications. New York: Springer-Verlag, 1976.Tabor, M. Chaos and Integrability in Nonlinear Dynamics: An Introduction. New York: Wiley, p. 197, 1989.Referenced on Wolfram|Alpha
Hopf BifurcationCite this as:
Weisstein, Eric W. "Hopf Bifurcation." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/HopfBifurcation.html