TOPICS
Search

Higman-Sims Group


The Higman-Sims group is the sporadic group HS of order

|HS|=44352000
(1)
=2^9·3^2·5^3·7·11.
(2)

The Higman-Sims group is 2-transitive, and has permutation representations of degree 100 and 176 (among others).

It is implemented in the Wolfram Language as HigmanSimsGroupHS[].


See also

Sporadic Group

Explore with Wolfram|Alpha

References

Conway, J. H.; Curtis, R. T.; Norton, S. P.; Parker, R. A.; and Wilson, R. A. Atlas of Finite Groups: Maximal Subgroups and Ordinary Characters for Simple Groups. Oxford, England: Clarendon Press, 1985.Wilson, R. A. "ATLAS of Finite Group Representation." http://brauer.maths.qmul.ac.uk/Atlas/v3/spor/HS.

Cite this as:

Weisstein, Eric W. "Higman-Sims Group." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/Higman-SimsGroup.html

Subject classifications