The Hh-function is a function closely related to the normal
distribution function. It can be defined using the auxilary functions
where erfc is the complementary error function. Then
Values for integer indices from to
are given by:
See also
Erfc,
Normal
Distribution Function,
Tetrachoric Function
Explore with Wolfram|Alpha
References
Abramowitz, M. and Stegun, I. A. (Eds.). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing.
New York: Dover, pp. 300 and 691, 1972.Jeffreys, H. and Jeffreys,
B. S. "The Parabolic Cylinder, Hermite, and Hh Functions" et seq.
§23.08-23.09 in Methods
of Mathematical Physics, 3rd ed. Cambridge, England: Cambridge University
Press, pp. 620-627, 1988.Referenced on Wolfram|Alpha
Hh Function
Cite this as:
Weisstein, Eric W. "Hh Function." From
MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/HhFunction.html
Subject classifications