TOPICS
Search

Herschfeld's Convergence Theorem


For real, nonnegative terms x_n and real p with 0<p<1, the expression

 lim_(k->infty)x_0+(x_1+(x_2+(...+(x_k)^p)^p)^p)^p

converges iff (x_n)^(p^n) is bounded.


See also

Nested Radical

Explore with Wolfram|Alpha

References

Herschfeld, A. "On Infinite Radicals." Amer. Math. Monthly 42, 419-429, 1935.Jones, D. J. "Continued Powers and a Sufficient Condition for Their Convergence." Math. Mag. 68, 387-392, 1995.

Referenced on Wolfram|Alpha

Herschfeld's Convergence Theorem

Cite this as:

Weisstein, Eric W. "Herschfeld's Convergence Theorem." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/HerschfeldsConvergenceTheorem.html

Subject classifications