TOPICS
Search

Hermite Constants


The Hermite constant is defined for dimension n as the value

 gamma_n=(sup_(f)min_(x_i)f(x_1,x_2,...,x_n))/([discriminant(f)]^(1/n))
(1)

(Le Lionnais 1983). In other words, they are given by

 gamma_n=4((delta_n)/(V_n))^(2/n),
(2)

where delta_n is the maximum lattice packing density for hypersphere packing and V_n is the content of the n-hypersphere. The first few values of (gamma_n)^n are 1, 4/3, 2, 4, 8, 64/3, 64, 256, ... (OEIS A007361 and A007362; Gruber and Lekkerkerker 1987, p. 518). Values for larger n are not known.

For sufficiently large n,

 1/(2pie)<=(gamma_n)/n<=(1.744...)/(2pie).
(3)

See also

Discriminant, Hypersphere Packing, Kissing Number, Sphere Packing

Explore with Wolfram|Alpha

References

Cassels, J. W. S. An Introduction to the Geometry of Numbers, 2nd ed. New York: Springer-Verlag, p. 332, 1997.Conway, J. H. and Sloane, N. J. A. Sphere Packings, Lattices, and Groups, 2nd ed. New York: Springer-Verlag, p. 20, 1993.Finch, S. R. "Hermite's Constants." §2.7 in Mathematical Constants. Cambridge, England: Cambridge University Press, pp. 506-508, 2003.Gruber, P. M. and Lekkerkerker, C. G. Geometry of Numbers, 2nd ed. Amsterdam, Netherlands: North-Holland, 1987.Le Lionnais, F. Les nombres remarquables. Paris: Hermann, p. 38, 1983.Sloane, N. J. A. Sequences A007361/M3201 and A007362/M2209 in "The On-Line Encyclopedia of Integer Sequences."

Referenced on Wolfram|Alpha

Hermite Constants

Cite this as:

Weisstein, Eric W. "Hermite Constants." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/HermiteConstants.html

Subject classifications