TOPICS
Search

Heptagonal Pentagonal Number


A number which is simultaneously a heptagonal number H_n and pentagonal number P_m. Such numbers exist when

 1/2n(5n-3)=1/2m(3m-1).
(1)

Completing the square and rearranging gives

 3(10n-3)^2-5(6m-1)^2=22.
(2)

Substituting x=10n-3 and y=6m-1 gives the Pell-like quadratic Diophantine equation

 3x^2-5y^2=22,
(3)

which has solutions (x,y)=(3,1), (7, 5), (17, 13), (53, 41), (133, 103), .... The integer solutions in m and n are then given by (n,m)=(1,1), (42, 54), (2585, 3337), (160210, 206830), (9930417, 12820113) ... (OEIS A046198 and A046199), corresponding to the heptagonal pentagonal numbers 1, 4347, 16701685, 64167869935, 246532939589097, ... (OEIS A048900).


See also

Heptagonal Number, Pentagonal Number

Explore with Wolfram|Alpha

References

Sloane, N. J. A. Sequences A046198, A046199, and A048900 in "The On-Line Encyclopedia of Integer Sequences."

Referenced on Wolfram|Alpha

Heptagonal Pentagonal Number

Cite this as:

Weisstein, Eric W. "Heptagonal Pentagonal Number." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/HeptagonalPentagonalNumber.html

Subject classifications