TOPICS
Search

Hemispherical Function


HemisphereFunction

The hemisphere function is defined as

 H(x,y)={sqrt(a-x^2-y^2)   for sqrt(x^2+y^2)<=a; 0   for sqrt(x^2+y^2)>a.
(1)

Watson (1966) defines a hemispherical function as a function S which satisfies the recurrence relations

 S_(n-1)(z)-S_(n+1)(z)=2S_n^'(z)
(2)

with

 S_1(z)=-S_0^'(z).
(3)

See also

Cylinder Function, Cylindrical Function

Explore with Wolfram|Alpha

References

Watson, G. N. A Treatise on the Theory of Bessel Functions, 2nd ed. Cambridge, England: Cambridge University Press, p. 353, 1966.

Referenced on Wolfram|Alpha

Hemispherical Function

Cite this as:

Weisstein, Eric W. "Hemispherical Function." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/HemisphericalFunction.html

Subject classifications