The circle which touches the incircles , , , and of a circular triangle and its associated triangles. It is either externally tangent to and internally tangent to incircles of the associated triangles , , and (as in the above figure), or vice versa. The Hart circle has several properties which are analogous to the properties on the nine-point circle of a linear triangle. There are eight Hart circles associated with a given circular triangle.
The Hart circle of any circular triangle and the Hart circles of the three associated triangles have a common tangent circle which touches the former in the opposite sense to that which it touches the latter (Lachlan 1893, p. 254). In addition, the circumcircle of any circular triangle is the Hart circle of the circular triangle formed by the circumcircles of the inverse associated triangles (Lachlan 1893, p. 254).