TOPICS
Search

Hardy-Littlewood Tauberian Theorem


Let a_n>=0 and suppose

 sum_(n=1)^inftya_ne^(-an)∼1/a

as a->0^+. Then

 sum_(n<=x)a_n∼x

as x->infty. This theorem is a step in the proof of the prime number theorem, but has subsequently been superseded by an approach due to Wiener (Hardy 1999, p. 34).


See also

Tauberian Theorem

Explore with Wolfram|Alpha

References

Berndt, B. C. Ramanujan's Notebooks, Part IV. New York: Springer-Verlag, pp. 118-119, 1994.Hardy, G. H. Ramanujan: Twelve Lectures on Subjects Suggested by His Life and Work, 3rd ed. New York: Chelsea, pp. 34-35, 1999.Hardy, G. H. and Littlewood, J. E. Quart. J. Math. 46, 215-219, 1915.Hardy, G. H. and Littlewood, J. E. Acta Math. 41, 119-196, 1918.Karamata. Math. Z. 32, 319-320, 1930.

Referenced on Wolfram|Alpha

Hardy-Littlewood Tauberian Theorem

Cite this as:

Weisstein, Eric W. "Hardy-Littlewood Tauberian Theorem." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/Hardy-LittlewoodTauberianTheorem.html

Subject classifications