TOPICS
Search

Hamilton's Equations


The equations defined by

q^.=(partialH)/(partialp)
(1)
p^.=-(partialH)/(partialq),
(2)

where p^.=dp/dt and q^.=dq/dt is fluxion notation and H is the so-called Hamiltonian, are called Hamilton's equations. These equations frequently arise in problems of celestial mechanics.

The vector form of these equations is

q^._i=H_(p_i)(t,q,p)
(3)
p^._i=-H_(q_i)(t,q,p)
(4)

(Zwillinger 1997, p. 136; Iyanaga and Kawada 1980, p. 1005).

Another formulation related to Hamilton's equation is

 p=(partialL)/(partialq^.),
(5)

where L is the so-called Lagrangian.


Explore with Wolfram|Alpha

References

Iyanaga, S. and Kawada, Y. (Eds.). Encyclopedic Dictionary of Mathematics. Cambridge, MA: MIT Press, p. 1005, 1980.Morse, P. M. and Feshbach, H. "Hamilton's Principle and Classical Dynamics." §3.2 in Methods of Theoretical Physics, Part I. New York: McGraw-Hill, pp. 280-301, 1953.Zwillinger, D. Handbook of Differential Equations, 3rd ed. Boston, MA: Academic Press, 1997.

Referenced on Wolfram|Alpha

Hamilton's Equations

Cite this as:

Weisstein, Eric W. "Hamilton's Equations." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/HamiltonsEquations.html

Subject classifications