A Hamiltonian walk on a connected graph is a closed walk of minimal length which visits every vertex of a graph
(and may visit vertices and edges multiple times). For example, a Hamiltonian walk
on the above 3-pan graph is given by the vertex sequence
4, 3, 1, 2, 3, 4 and hence is of length 5.
Asano, T.; Nishizeki, T.; and Watanabe, T. "An Upper Bound on the Length of a Hamiltonian Walk of a Maximal Planar Graph." J.
Graph Th.4, 315-336, 1980.Asano, T.; Nishizeki, T.; and
Watanabe, T. "An Approximation Algorithm for the Hamiltonian Walk Problem on
Maximal Planar Graph." J. Discr. Appl. Math.5, 211-222, 1983.Bermond,
J. C. "On Hamiltonian Walks." Congr. Numer.15, 41-51,
1976.Chartrand, G.; Thomas, T.; Saenpholphat, V.; and Zhang, P. "A
New Look at Hamiltonian Walks." Bull. Inst. Combin. Appl.42,
37-52, 2004.Goodman, S. E. and Hedetniemi, S. T. "On
Hamiltonian Walks in Graphs." In Proceedings of the Fourth Southeastern Conference
on Combinatorics, Graph Theory and Computing. Held at Florida Atlantic University,
Boca Raton, Fla., March 5-8, 1973 (Ed. F. Hoffman, R. B. Levow,
and R. S. D. Thomas). Winnipeg, Manitoba: Utilitas Mathematica, pp. 335-342,
1973.Goodman, S. E. and Hedetniemi, S. T. "On Hamiltonian
Walks in Graphs." SIAM J. Comput.3, 214-221, 1974.Punnim,
N.; Saenpholphat, V.; and Thaithae, S. "Almost Hamiltonian Cubic Graphs."
Int. J. Comput. Sci. Netw. Security7, 83-86, 2007.Takamizawa,
K.; Nishizeki, T.; and Saito, N. "An Algorithm for Finding a Short Closed Spanning
Walk in a Graph." Networks10, 249-263, 1980.Vacek,
P. "On Open Hamiltonian Walks in Graphs." Arch. Math. (Brno)27A,
105-111, 1991.