TOPICS
Search

Hall-Littlewood Polynomial


Let n be an integer such that n>=lambda_1, where lambda=(lambda_1,lambda_2,...) is a partition of n=|lambda| if lambda_1>=lambda_2>=...>=0, where lambda_i are a sequence of positive integers stabilizing 0 such that sum_(i)lambda_i=n. Also let m_i(lambda) be the number of parts of lambda of size i. Then the permutation w in S_n, where S_n is the symmetric group, acts on the variables x_1, ..., x_n by sending x_i to x_(w(i)). Letting t be a complex number, the Hall-Littlewood polynomials are defined by

 P_lambda(x_1,...,x_n;t) 
 =1/(product_(i>=0)product_(r=1)^(m_i(lambda))(1-t^r)/(1-t))sum_(w in S_n)w(x_1^(lambda_1)...x_n^(lambda_n)product_(i<j)(x_i-tx_j)/(x_i-x_j)).

These polynomials interpolate between the Schur functions (with t=0) and the monomial symmetric functions (with t=1; Fulman 1999).


Explore with Wolfram|Alpha

References

Fulman, J. "The Rogers-Ramanujan Identities, the Finite General Linear Groups, and the Hall-Littlewood Polynomials." Proc. Amer. Math. Soc. 128, 17-25, 1999.Macdonald, I. G. Symmetric Functions and Hall Polynomials, 2nd ed. Oxford, England: Oxford University Press, p. 208, 1995.

Referenced on Wolfram|Alpha

Hall-Littlewood Polynomial

Cite this as:

Weisstein, Eric W. "Hall-Littlewood Polynomial." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/Hall-LittlewoodPolynomial.html

Subject classifications