TOPICS
Search

Green's Function--Helmholtz Differential Equation


The inhomogeneous Helmholtz differential equation is

 del ^2psi(r)+k^2psi(r)=rho(r),
(1)

where the Helmholtz operator is defined as L^~=del ^2+k^2. The Green's function is then defined by

 (del ^2+k^2)G(r_1,r_2)=delta^3(r_1-r_2).
(2)

Define the basis functions phi_n as the solutions to the homogeneous Helmholtz differential equation

 del ^2phi_n(r)+k_n^2phi_n(r)=0.
(3)

The Green's function can then be expanded in terms of the phi_ns,

 G(r_1,r_2)=sum_(n=0)^inftya_n(r_2)phi_n(r_1),
(4)

and the delta function as

 delta^3(r_1-r_2)=sum_(n=0)^inftyphi_n(r_1)phi_n(r_2).
(5)

Plugging (◇) and (◇) into (◇) gives

 del ^2[sum_(n=0)^inftya_n(r_2)phi_n(r_1)]+k^2sum_(n=0)^inftya_n(r_2)phi_n(r_1)=sum_(n=0)^inftyphi_n(r_1)phi_n(r_2).
(6)

Using (◇) gives

 -sum_(n=0)^inftya_n(r_2)k_n^2phi_n(r_1)+k^2sum_(n=0)^inftya_n(r_2)phi_n(r_1)=sum_(n=0)^inftyphi_n(r_1)phi_n(r_2)
(7)
 sum_(n=0)^inftya_n(r_2)phi_n(r_1)(k^2-k_n^2)=sum_(n=0)^inftyphi_n(r_1)phi_n(r_2).
(8)

This equation must hold true for each n, so

 a_n(r_2)phi_n(r_1)(k^2-k_n^2)=phi_n(r_1)phi_n(r_2)
(9)
 a_n(r_2)=(phi_n(r_2))/(k^2-k_n^2),
(10)

and (◇) can be written

 G(r_1,r_2)=sum_(n=0)^infty(phi_n(r_1)phi_n(r_2))/(k^2-k_n^2).
(11)

The general solution to (◇) is therefore

psi(r_1)=intG(r_1,r_2)rho(r_2)d^3r_2
(12)
=sum_(n=0)^(infty)int(phi_n(r_1)phi_n(r_2)rho(r_2))/(k^2-k_n^2)d^3r_2.
(13)

Explore with Wolfram|Alpha

WolframAlpha

More things to try:

References

Arfken, G. Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press, pp. 529-530, 1985.

Cite this as:

Weisstein, Eric W. "Green's Function--Helmholtz Differential Equation." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/GreensFunctionHelmholtzDifferentialEquation.html

Subject classifications