TOPICS
Search

Great Dodecahemidodecahedron


U70

The great dodecahemidodecahedron is the uniform polyhedron with Maeder index 70 (Maeder 1997), Wenninger index 107 (Wenninger 1989), Coxeter index 86 (Coxeter et al. 1954), and Har'El index 75 (Har'El 1993). It has Wythoff symbol 5/35/2|5/3 and its faces are 12{5/2}+6{(10)/3}.

The great dodecahemidodecahedron is implemented in the Wolfram Language as UniformPolyhedron[107], UniformPolyhedron["GreatDodecahemidodecahedron"], UniformPolyhedron[{"Coxeter", 86}], UniformPolyhedron[{"Kaleido", 75}], UniformPolyhedron[{"Uniform", 70}], or UniformPolyhedron[{"Wenninger", 107}]. It is also implemented in the Wolfram Language as PolyhedronData["GreatDodecahemidodecahedron"].

IcosidodecahedralGraph

Its skeleton graph is the icosidodecahedral graph.

Its convex hull is the regular icosidodecahedron.

Its circumradius for unit edge length is

 R=phi^(-1),

where phi is the golden ratio.

Its dual is the great dodecahemidodecacron.


See also

Uniform Polyhedron

Explore with Wolfram|Alpha

References

Coxeter, H. S. M.; Longuet-Higgins, M. S.; and Miller, J. C. P. "Uniform Polyhedra." Phil. Trans. Roy. Soc. London Ser. A 246, 401-450, 1954.Har'El, Z. "Uniform Solution for Uniform Polyhedra." Geometriae Dedicata 47, 57-110, 1993.Maeder, R. E. "70: Great Dodecahemidodecahedron." 1997. https://www.mathconsult.ch/static/unipoly/70.html.Wenninger, M. J. "Great Dodecahemidodecahedron." Model 107 in Polyhedron Models. Cambridge, England: Cambridge University Press, p. 165, 1989.

Referenced on Wolfram|Alpha

Great Dodecahemidodecahedron

Cite this as:

Weisstein, Eric W. "Great Dodecahemidodecahedron." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/GreatDodecahemidodecahedron.html

Subject classifications