TOPICS
Search

Great Dodecahemicosahedron


U65

The great dodecahemicosahedron is the uniform polyhedron with Maeder index 65 (Maeder 1997), Wenninger index 102 (Wenninger 1989), Coxeter index 81 (Coxeter et al. 1954), and Har'El index 70 (Har'El 1993). It has Wythoff symbol 5/45|3 and its faces are 10{6}+6{5}+6{5/4}. It is a faceted dodecadodecahedron.

The great dodecahemicosahedron is implemented in the Wolfram Language as UniformPolyhedron[102], UniformPolyhedron["GreatDodecahemicosahedron"], UniformPolyhedron[{"Coxeter", 81}], UniformPolyhedron[{"Kaleido", 70}], UniformPolyhedron[{"Uniform", 65}], or UniformPolyhedron[{"Wenninger", 102}]. It is also implemented in the Wolfram Language as PolyhedronData["GreatDodecahemicosahedron"].

The convex hull is a regular icosidodecahedron.

Its skeleton is the dodecadodecahedral graph.

The circumradius for unit edge length is R=1.

Its dual is the great dodecahemicosacron.


See also

Uniform Polyhedron

Explore with Wolfram|Alpha

References

Coxeter, H. S. M.; Longuet-Higgins, M. S.; and Miller, J. C. P. "Uniform Polyhedra." Phil. Trans. Roy. Soc. London Ser. A 246, 401-450, 1954.Har'El, Z. "Uniform Solution for Uniform Polyhedra." Geometriae Dedicata 47, 57-110, 1993.Maeder, R. E. "65: Great Dodecahemicosahedron." 1997. https://www.mathconsult.ch/static/unipoly/65.html.Wenninger, M. J. "Great Dodecahemicosahedron." Model 102 in Polyhedron Models. Cambridge, England: Cambridge University Press, p. 158, 1989.

Referenced on Wolfram|Alpha

Great Dodecahemicosahedron

Cite this as:

Weisstein, Eric W. "Great Dodecahemicosahedron." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/GreatDodecahemicosahedron.html

Subject classifications