TOPICS
Search

Graph Energy


The energy of a graph is defined as the sum of the absolute values of its graph eigenvalues (i.e., the sum of its graph spectrum terms).

Other varieties of graph energy are defined analogously using different matrices associated with a graph (and in particular, a weighted adjacency matrix).

As summarized by Alikhani and Ghanbari (2024), the energy of a graph cannot be an odd integer (Bapat and Pati 2004), the square root of an odd integer (Pirzada and Gutman 2008), or the golden ratio (Alikhani and Iranmanesh 2010).


See also

ABC Energy, Arithmetic-Geometric Energy, Graph Eigenvalue, Graph Spectrum, Randić Energy, Sombor Energy

Explore with Wolfram|Alpha

References

Alikhani, S. and Ghanbari, N. "Golden Ratio in Graph Theory: A Survey." 9 Jul 2024. https://arxiv.org/abs/2407.15860.Alikhani, S. and Iranmanesh, M. A. "Energy of Graphs, Matroids and Fibonacci Numbers." Iranian J. Math. Sci. Inform. 5, 55-60, 2010.Bapat, R. B. and Pati, S. "Energy of a Graph Is Never an Odd Integer." Bull. Kerala Math. Assoc. 1, 129-132, 2004.Cvetković, D. M.; Doob, M.; Sachs, H. Spectra of Graphs. New York: Academic Press, 1980.Gutman, I. "The Energy of a Graph." In 10. Steiermärkisches Mathematisches Symposium (Stift Rein, Graz, 1978). Ber. Math.-Statist. Sekt. Forsch. Graz 103, 1-22, 1978.Gutman, I. "The Energy of a Graph: Old and New Results." In Algebraic Combinatorics and Applications (Gößweinstein, 1999). Berlin: Springer, pp. 196-211, 2001.Li, X.; Shi, Y.; and Gutman, I. Graph Energy. New York: Springer, 2012.Pirzada, S. and Gutman, I. "Energy of Graph Is Never the Square Root of an Odd Integer." Appl. Anal. Disc. Math. 2, 118-121, 2008.

Cite this as:

Weisstein, Eric W. "Graph Energy." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/GraphEnergy.html

Subject classifications