The locus of a point (or the envelope of a line) fixed in relation to a curve which slides between fixed curves. For example, if is a line segment and a point on the line segment, then describes an ellipse when slides so as to touch two orthogonal straight lines. The glissette of the line segment itself is, in this case, an astroid.
Glissette
See also
RouletteExplore with Wolfram|Alpha
References
Besant, W. H. Notes on Roulettes and Glissettes, 2nd enl. ed. Cambridge, England: Deighton, Bell & Co., 1890.Lockwood, E. H. "Glissettes." Ch. 20 in A Book of Curves. Cambridge, England: Cambridge University Press, pp. 160-165, 1967.Yates, R. C. "Glissettes." A Handbook on Curves and Their Properties. Ann Arbor, MI: J. W. Edwards, pp. 108-112, 1952.Referenced on Wolfram|Alpha
GlissetteCite this as:
Weisstein, Eric W. "Glissette." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/Glissette.html