TOPICS
Search

Glissette


The locus of a point P (or the envelope of a line) fixed in relation to a curve C which slides between fixed curves. For example, if C is a line segment and P a point on the line segment, then P describes an ellipse when C slides so as to touch two orthogonal straight lines. The glissette of the line segment C itself is, in this case, an astroid.


See also

Roulette

Explore with Wolfram|Alpha

References

Besant, W. H. Notes on Roulettes and Glissettes, 2nd enl. ed. Cambridge, England: Deighton, Bell & Co., 1890.Lockwood, E. H. "Glissettes." Ch. 20 in A Book of Curves. Cambridge, England: Cambridge University Press, pp. 160-165, 1967.Yates, R. C. "Glissettes." A Handbook on Curves and Their Properties. Ann Arbor, MI: J. W. Edwards, pp. 108-112, 1952.

Referenced on Wolfram|Alpha

Glissette

Cite this as:

Weisstein, Eric W. "Glissette." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/Glissette.html

Subject classifications